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We study collective spin excitations of a magnetically ordered state in a multicomponent system composed
of both itinerant electrons and local moments. Here the induced spin-density-wave �SDW� ordering of itinerant
electrons and the collinear antiferromagnetic ordering of local moments are locked together via a Hund’s rule
coupling. We show that the Goldstone theorem still holds at the random-phase approximation level with the
gapless spin wave protected inside the small SDW gap of itinerant electrons, which, however, is fragile in the
presence of ion anisotropy. A gapped “out-of-phase” spin mode extending over a much wider energy scale
above the SDW gap is found to be more robust against the ion anisotropy, which is mainly contributed by the
local moment fluctuations. While the scattering between the Goldstone mode and itinerant electrons diminishes
within the SDW gap, the out-of-phase mode will strongly interact with itinerant electrons and thus dominate
the spin and charge dynamics in such an ordered phase. Possible relevance of such a model to the iron
pnictides will be also discussed.
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I. INTRODUCTION

The recent discovery of high-Tc superconductors in the
iron pnictides1 has renewed a tremendous interest in the in-
terplay between the magnetism and superconductivity. The
similar issue has been vigorously investigated in the high-Tc
cuprates over two decades, where antiferromagnetism has
been firmly related to the localized electrons of the Mott
insulator in undoped cuprate compounds.2 By contrast, in the
pnictides, the undoped parent material is not a simple Mott-
Hubbard insulator but resembles a multiband bad metal, i.e.,
the iron 3d electrons are believed to be quite itinerant with
their hybridized multiorbitals forming multiple Fermi pock-
ets at the Fermi level.3–7

It is natural for many to consider the spin-density-wave
�SDW� order, observed in the undoped parent compounds by
the neutron-scattering measurements,8 as originated from the
same itinerant electrons via Fermi-surface nesting.3 This pic-
ture seems more consistent in explaining the angle-resolved
photoemission spectroscopy �ARPES�,9–11 transport,1,12 and
optical properties13 than a purely localized model, e.g., the
J1-J2 model,14–17 where a Mott-insulator transition has been
implied. However, a purely itinerant picture is not satisfac-
tory even according to the first-principles calculation. It has
been pointed out that local-density approximation is not
stable against formation of small moments in Refs. 18–21.
This fact suggests that, in density-functional theory and fluc-
tuation exchange approximation approaches, the system does
not have strong instability toward stripe antiferromagnetic
�AF� order due to the Fermi-surface nesting.22 On the other
hand, a purely localized model is more reasonable in ex-
plaining the spin excitations in neutron scattering17 and high-
temperature magnetic susceptibility23–25 but obviously fails
in understanding the bad metal behavior1,13,26,27 and the pres-
ence of the small Fermi pockets9–11,28,29 in the parent com-
pounds.

Based on the overall experimental evidence, an alternative
picture has been recently proposed,30 which assumes that

some kind of orbital-selective Mott transition happens in the
iron 3d orbitals of the pnictides such that both itinerant and
Mott-localized electron coexist in the system. The minimal
model30 based on this picture tries to reconcile the seemingly
contradictory experimental facts and provides a natural un-
derstanding of the unified driving force behind the collinear
AF order and high-temperature superconductivity. Recently a
microscopic realization of an orbital-selective Mott transition
in the pnictides has been studied31,32 based on the dynamic
mean-field theory, which lends further support to this model.

The key and unique feature for such a coexistent itinerant
and localized electron system is that the two subsystems
share the same characteristic momenta at Qs= �� ,0� or
�0,��. Namely, the hole and electron Fermi-surface pockets
around � and M points in the Brillouin zone �BZ� are ap-
proximately connected by Qs in the undoped case �i.e., close
to the Fermi-surface nesting�, and at the same time, the local
moments are strongly correlated at the AF wave vectors Qs.
As a consequence, the local Hund’s rule coupling between
the itinerant electrons and local moments can be significantly
enhanced around Qs, which is called the “resonant effect.”30

At low temperature, such a resonant effect can serve as a
predominant force in driving the magnetic or pairing insta-
bility at different dopings. Here the magnetic phase is
predicted30 to be an induced SDW order of the itinerant elec-
trons locking with the collinear AF order of the local mo-
ments at the same Qs. Corresponding to such an AF ordering,
a small SDW gap will open up in the excitation spectrum of
itinerant electrons, although not necessarily pinned at the
Fermi level as in an SDW state purely driven by Fermi-
surface nesting. At the mean-field level, the low-lying AF
fluctuation of the local moments is also gapped at Qs due to
the mutual locking of the magnetic orders in the two sub-
systems. Therefore, after the spontaneous magnetic symme-
try breaking, the strong “resonant” scattering between the
two degrees of freedom gets substantially reduced, which
leads to a very coherent charge transport contributed by the
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ungapped part of the Fermi surfaces in consistency with the
optical measurement.13

However, it remains an important issue whether a gapless
spin wave, i.e., a Goldstone mode, is still present in the mag-
netically ordered state of such a multicomponent system. To
answer this question, one has to go beyond the mean-field
theory to study the collective spin fluctuations, which is also
important in order to self-consistently address the issue how
the charge dynamics gets reshaped in the AF phase. In this
paper, we shall address this issue with using a realistic five-
band model7 to characterize the itinerant electrons near the
Fermi pockets, and a J1-J2 type model to describe the Mott-
localized electrons. Then we study the Hund’s rule coupling
between the itinerant and localized electrons at the random-
phase approximation �RPA� level in the magnetic ordered
phase. We demonstrate that the Goldstone theorem indeed
holds at the RPA level as a gapless spin wave emerges within
the mean-field SDW gap of itinerant electrons. But it is frag-
ile against the ion anisotropy. We further find that the cou-
pling between the Goldstone mode and the charge carriers
diminishes in the long wavelength around Qs as expected.
On the other hand, distinct from a single component system,
a gapped “out-of-phase” collective spin mode is also present
with its high-energy part predominantly contributed by the
local moments whose energy scale �J2 extends over a much
wider regime than the SDW gap. Its low-energy part gets
strongly renormalized by coupling to the itinerant electrons
around Qs—it becomes gapped once the mean-field SDW
order forms by itinerant electrons, which is not significantly
modified at the RPA level. Furthermore, such an out-of-phase
mode is not sensitive to a weak ion-anisotropy effect and is
thus more robust than the Goldstone mode. The existence of
the two branches of spin excitations in the AF state is a
unique prediction of the present multicomponent model. In
particular, it is this out-of-phase spin mode that remains
strongly interacting with itinerant electrons, at an energy
higher than its gap, and therefore dominates the high-energy
magnetic and transport properties in the magnetically or-
dered phase.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the model and present the mean-field
treatment in the magnetically ordered state. Then in Sec. III,
we discuss the spin dynamics at the RPA level and demon-
strate that the spin collective excitations are split into a gap-
less Goldstone mode which is upper-bounded and a gapped
out-of-phase mode which extends over a much wider energy
scale. In Sec. IV, we study the scattering between the collec-
tive spin modes and the itinerant electrons based on the
single-particle self-energy of the itinerant electrons and the
optical conductivity, which illustrate that the out-of-phase
mode will play a dominant role beyond its energy gap. Fi-
nally, Sec. V is devoted to the discussion and conclusion.

II. A MULTICOMPONENT SYSTEM OF COUPLED
ITINERANT AND LOCALIZED ELECTRONS

A. Model

We consider a multicomponent system composed of co-
existent multiband itinerant and Mott-localized electrons de-
scribed by

H = Hit + Hlo + HJH
. �1�

Here Hit is a tight-binding model of multiband itinerant elec-
trons,

Hit = − �
i,j,m,n,�

tij,mncim�
† cjn�, �2�

where m and n are the orbital indices. The hopping integral
tij,mn in Hit will be given based on a realistic five-band tight-
binding model proposed7 to describe the undoped iron-
pnictide materials. The resulting band structure near the
Fermi energy is shown in Fig. 1 by the solid �black� curves
with the Fermi surface shown in Fig. 2�a� in the undoped
case �i.e., six electrons per site�. Note that some slight modi-
fication with a global renormalization factor reducing the
bandwidth has been phenomenologically made here in order
to be consistent with ARPES.9–11,29 As shown in Fig. 2�a�,
the itinerant electrons form hole and electron pockets at the
Fermi energy, which are located at the � point and the M

FIG. 1. �Color online� The band structure near the Fermi energy
for the five-band model described by Hit in Eq. �2� �black solid
curves� in the undoped case. The reconstruction of the band struc-
ture of itinerant electrons in the presence of a collinear AF order is
shown by red dotted curves.

FIG. 2. �Color online� �a� The Fermi pockets of the itinerant
electrons in the undoped case. �b� The reconstruction of the Fermi
surface in the presence of a collinear AF order with a wave vector
Qs= �� ,0� in the reduced BZ.
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point, respectively, separated by the momenta Qs in an ex-
tended BZ.

The second term Hlo in Eq. �1� describes the localized
electrons in which a Mott gap is opened up via the so-called
orbital-selective Mott transition.30 Namely, the correspond-
ing electrons only contribute to spin fluctuations, near the
Fermi energy, by the local moments formed from the filled
lower Hubbard band. Note that a microscopic realization of
the orbital-selective Mott transition in such a system has
been recently discussed based on the dynamic mean-field
theory.31,32 We shall simply use a J1-J2 model of S=1 to
depict the superexchange couplings between these local mo-
ments, i.e.,

Hlo = J1�
�ij�

Ŝi · Ŝ j + J2 �
��ij��

Ŝi · Ŝ j , �3�

where �ij� and ��ij�� denote the nearest-neighbor and next-
nearest-neighbor coupling, respectively. Here we assume J1
�2J2 such that the ground state of Hlo itself may form a
collinear AF ordering at the wave vector Qs. In principle, the
same five-band electrons in iron pnictides should contribute
to both itinerant and local moment degrees of freedom. But
for simplicity we treat Hit and Hlo as if they govern indepen-
dent degrees of freedom in the low-energy sector near the
Fermi energy, as long as the Mott gap remains a large energy
scale. We ignore the issues like how the Fermi-surface shape
gets affected by the orbital-selective Mott transition as well
as how the Luttinger volume is correctly accounted for and
mainly focus on the low-energy physics in the present work.

The third term HJH
in Eq. �1� is the Hund’s rule coupling

between the spins of itinerant and the localized electrons,

HJH
= − �

i,m
J0

mŜi · ŝim, �4�

where ŝim=cim
† �̂cim is the spin operator of the itinerant elec-

trons in the mth orbital and Ŝi denotes the localized moment
at site i. J0

m is a renormalized Hund’s rule coupling constant.
For simplicity, we shall assume a single J0

m=J0 for different
orbitals throughout the paper.

Originally a simpler form of Eq. �1� was proposed as a
minimal model to describe the low-energy physics in the iron
pnictides.30 The most important feature in such a model
Hamiltonian is that the peculiar momenta Qs, which on the
one hand connects the two Fermi pockets of the itinerant
electrons at � and M points, respectively, and on the other
hand coincide with the AF wave vectors of the local mo-
ments. It implies strongly enhanced dynamic coupling be-
tween the itinerant and local moment degrees of freedom,
once the short-range AF correlations of the local moments
set in around Qs even in a high-temperature normal state.
With the decrease of temperature, such a resonant coupling
will result in an AF ordered phase with distinctive dynamic
behaviors to be explored below, as compared to an ordinary
SDW state of a pure itinerant electron system due to the
Fermi-surface nesting mechanism or the collinear AF state of
a pure J1-J2 mode.

B. Mean-field treatment in the collinear AF ordered state

In the following we first use a mean-field approximation
to study the collinear AF ordered state in Eq. �1�. The spin
and charge dynamics at the RPA level will be investigated in
the later sections.

We start with the interaction term HJH
in Eq. �4� between

the two subsystems. By introducing two order parameters of
magnetization for the local moments, M�lo�, and itinerant

electrons, M�it�, respectively, as in �Ŝi
z��M�lo�e

iQs·ri and
�m�ŝim

z ��M�it�e
iQs·ri, one obtains the following linearization

in HJH
, given by

HJH
→ HI = − J0�

i
�M�lo�e

iQs·ri�
m

sim
z + M�it�e

iQs·riŜi
z	

� HI�it� + HI�lo�. �5�

Below the effect of such mean-field terms on the local mo-
ments and itinerant electrons will be explored in a self-
consistent way.

1. Local-moment part

In the magnetic order phase with �Ŝi
z�=M�lo�e

iQs·ri, one
may first use the conventional spin-wave approximation to
treat Hlo in Eq. �3� and then add HI�lo� in Eq. �5� to incorpo-
rate the effect of the coupling to the itinerant electrons. Here
Qs is chosen to be �� ,0�.

Introduce the Holstein-Primakoff �HP� transformation,

ŜiA
+ = 
2S − ai

†aiai, ŜiA
− = ai

†
2S − ai
†ai, ŜiA

z = S − ai
†ai,

ŜjB
+ = 
2S − bj

†bjbj
†, ŜjB

− = bj

2S − bj

†bj, ŜjB
z = − S + bj

†bj ,

�6�

where A and B sublattices are defined by the staggered

factor eiQs·ri = �1. Under the approximation 
2S−ai
†ai

�
2S−bi
†bi�
2S and using the boson operators in the mo-

mentum space,

ai = � 2

N
1/2

�
k

�
ak exp�ik · ri� , �7�

bj = � 2

N
1/2

�
k

�
bk exp�ik · r j� , �8�

Hlo is transformed into

Hlo = S�
k

�
��k�ak

†ak + bk
†bk� + Mk�akb−k + ak

†b−k
† �� , �9�

where �k� means that the sum is within a reduced BZ with

�k = 4J2 + 2J1 cos ky , �10�

Mk = 2J1 cos kx + 4J2 cos kx · cos ky . �11�

Then Eq. �9� can be diagonalized by the Bogolubov transfor-
mation,
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ak = uk�k + vk�−k
† ,

b−k
+ = vk�k + uk�−k

† , �12�

as follows:

Hlo = �
k

�
	k��k

†�k + �k
†�k� , �13�

where

uk = �	k + �k

2	k
1/2

, �14�

vk = − �− 	k + �k

2	k
1/2

sgn�Mk� , �15�

	k = S
�k
2 − Mk

2 . �16�

Here 	k is gapless at k=Qs as the Goldstone mode of Hlo in
the AF ordered phase.

Now let us add HI�lo� in Eq. �5� arising from the mean-
field decoupling of HJH

. It can be re-expressed in the spin-
wave formalism by

HI�lo� = J0M�it��
k

�
�ak

†ak + bk
†bk� + const. �17�

This term will lead to a shift in �k defined in Eq. �10�: i.e.,
�k→�k+J0M�it� /S. As a result, the dispersion of the spin
wave is modified by

	k → 	k = S
��k + J0M�it�/S�2 − Mk
2 . �18�

In particular, 	k is no longer gapless at Qs with an energy
gap induced by M�it� as

	Qs
= 
4M�it�SJ0�2J2 + J1� + �M�it�J0�2. �19�

The order parameter M�lo� can be self-consistently calculated
as

M�lo� = S −
1

N��
k

�
�ak

†ak + bk
†bk�� = S −

2

N
�
k

�
vk

2 , �20�

where vk is defined by Eq. �15� with �k→�k+J0M�it� /S and
	k defined in Eq. �18�.

Finally, the spin-spin correlations for the local moment
defined by


�lo�
+− �q,q,t� = − i�TŜq

+�t�Ŝ−q
− �0�� ,


�lo�
+− �q,q + Qs,t� = − i�TŜq

+�t�Ŝ−q−Qs

− �0��

can be obtained for this mean-field spin-wave state in the
frequency space as


�lo�0
+− �q,q,	� = M�lo��uk + vk�2

�� 1

	 − 	k + i0+ +
1

− 	 − 	k + i0+ ,


�lo�0
+− �q,q + Qs,	� = M�lo�� 1

	 − 	k + i0+ −
1

− 	 − 	k + i0+ .

�21�

The spin gap in Eq. �19� is clearly illustrated in the dynamic
spin susceptibility 
�lo�0q� �	��−2 Im 
�lo�0

+− �q ,q ,	� at q=Qs
as shown in Fig. 3 �the parameters used are to be
given below�. It is pointed out that in the above cal-
culation, we have further used the approximation: SiA�B�

+

→
2M�lo�ai
†�
2M�lo�bi

†� in the original HP transformation,
Eq. �6�, such that the spin commutation relations are satisfied

at the mean-field level, i.e., �Ŝ� Ŝ�= i��Ŝ�.

2. Itinerant electron part

Combining HI�it� in Eq. �5� with the band kinetics energy
term Hit in Eq. �2�, the mean-field Hamiltonian of the itiner-
ant electrons reads

Hit + HI�it�

= �
kmn�

� � fmn�k�ckm�
+ ckn� + fmn�k + Qs�ck+Qs,m�

† ck+Qs,n�

−
J0M�lo��

2
mn�ck+Qs,m�

† ck,n� + ck,m�
† ck+Qs,n��	

� �
k�

�
Xk�

† H�Xk�, �22�

where

fmn�k� = 2 �
ri−rj

tij,mneik·�ri−rj�. �23�

FIG. 3. Dynamic spin susceptibility of local moments at mean-
field level, i.e., 
�lo�0q� �	��−2 Im 
�lo�0

+− �q ,q ,	� at q=Qs shows a
gap, given by Eq. �19�, which is opened up in the presence of a
mean-field coupling to the SDW ordering of itinerant electrons,
with the parameters given in Sec. II B.
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2In the second line of Eq. �22�, the 10�10 matrix H� for the
five bands is defined by

�H�� = � Fk − �I�

− �I� Fk+Qs

 �24�

with

� =
J0M�lo�

2
. �25�

Here I is the 5�5 identity matrix and F is the matrix defined
by �F�m,n= fmn. The column vector Xk� is given by

Xk�
T � �ck,1�,ck,2�, . . . ,ck+Qs,1�ck+Qs,2�, . . .� . �26�

By diagonalizing the 10�10 matrix �H��,

U�
†H�U� = D , �27�

one gets

Hit + HI�it� = �
k��

�
Ek�ck��

† ck��, �28�

where the band energy Ek� is equal to the �th diagonal ele-
ment of D, presented in Fig. 1 by the red dotted curves with
the corresponding Fermi surface in the reduced BZ shown in
Fig. 2�b� in the undoped case. Here the order parameter M�it�
is self-consistently determined by

M�it� =
1

2N
�
in

eiQs·ri�cin↑
† cin↑ − cin↓

† cin↓�

=
2

N
�

Ek��EF

�
�

n

Uk↑
� �n + 5,��Uk↑�n,�� . �29�

Together with Eq. �20�, we find M�it�=0.252 and M�lo�
=0.892 by choosing J0=20 meV at J1=0 and J2=20 meV

for S=1. In the following we shall use these parameters to
examine various spin and charge dynamics �we have also
checked other small ratios of J1 /J2 and found the results
remain qualitatively unchanged�.

Similar mean-field results have been previously
obtained30 in a simpler model of Eq. �1�, where a spin gap
similar to Eq. �19� is also found in the spin-wave spectrum of
local moments due to the Hund’s rule coupling to the SDW
order of the itinerant electrons. Such a gap will protect the
collinear AF ordering jointly formed by both local moments
and itinerant electrons below a transition temperature TSDW.
For example, the presence of this gap is reflected by a steep
reduction in the uniform spin susceptibility below TSDW,
which is consistent30 with the experimental measurement in
the iron pnictides.23,24 However, according to the Goldstone
theorem, a gapless mode is generally expected to exist in the
AF ordered state. How such a Goldstone mode can be rec-
onciled with the gapped local moment fluctuations discussed
above will be studied at the RPA level in the next section.

Finally, the spin-spin correlation functions of itinerant
electrons are defined as


�it�
+−�q,q,t� = − i�Tŝq

+�t�ŝ−q
− �0�� ,


�it�
+−�q,q + Qs,t� = − i�Tŝq

+�t�ŝ−q−Qs

− �0�� ,

where ŝq
� is the sum over all the five orbital

ŝq
� = �

m

ŝqm
� . �30�

In the above mean-field state, after a straightforward but te-
dious calculation one obtains, for example,


�it�0
+− �q,q,	� = �

k�R,k+q�R,Ek,��EF,Ek+q,��EF

�Vk,k+q
�1� ��,���2

	 − �Ek,� − Ek+q,�� + i0+ + �
k�R,k+q�R,Ek,��EF,Ek+q�Qs,�

�EF

�Vk,k+q�Qs

�2� ��,���2

	 − �Ek,� − Ek+q�Qs,�
� + i0+

+ �
k�R,k−q�R,Ek,��EF,Ek−q,��EF

�Vk−q,k
�1� ��,���2

− 	 − �Ek,� − Ek−q,�� + i0+

+ �
k�R,k−q�R,Ek,��EF,Ek−q�Qs,�

�EF

�Vk−q�Qs,k
�2� ��,���2

− 	 − �Ek,� − Ek−q�Qs,�
� + i0+ , �31�

for the momentum q within the reduced BZ, i.e., q�R, and

Vk,q
�1� ��,�� � �

m

�Uk↓
� �m,��Uq↑�m,��

+ Uk↓
� �m + 5,��Uq↑�m + 5,��� ,

Vk,q
�2� ��,�� � �

m

�Uk↓
� �m,��Uq↑�m + 5,��

+ Uk↓
� �m + 5,��Uq↑�m,��� �32�

with, say,
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ŝ−q
− = �

��,k�R,k+q�R

ck,�,↓
† ck+q,�↑Vk,k+q

�1� ��,��

+ �
��,k�R,k+q�R

ck,�,↓
† ck+q�Qs,�↑Vk,k+q�Qs

�2� ��,�� .

�33�

The other Green’s function can be similarly obtained. Nu-
merical calculation for the dynamic spin susceptibility of
the itinerant electrons at the mean-field level, i.e.,

�it�0Qs
� �	��−2 Im 
�it�0

+− �Qs ,Qs ,	� is presented in Fig. 4
with and without SDW order, where the suppressing of the
low-frequency spectrum by the SDW gap at 2�SDW is clearly
shown.

III. SPIN DYNAMICS

In this section, we shall calculate the dynamic spin sus-
ceptibility at the RPA level beyond the above mean-field ap-
proximation, by which both a Goldstone mode and a gapped
collective spin mode in the AF ordered phase can be recov-
ered.

A. RPA treatment

The Hund’s rule interaction between the local moments
and itinerant electrons in Eq. �4� is rewritten as

HJH
= − J0�

q
Ŝq · ŝ−q, �34�

where the spin operator ŝ appears as a whole for the five
band. At the RPA level, for example,


�it�
+−�q,q,t� = − i�Tŝq

+�t�ŝ−q
− �0 +

i

2
�Tŝq

+�t�HJH
�t1�HJH

�t2�ŝ−q
− �0

+ O�HJH

4 � = 
�it�0
+− �q,q,t�

+ � J0

2
2�

−�

�

dt1�
−�

�

dt2�
�it�0
+− �q,q,t

− t1�
�lo�0
+− �q,q,t1 − t2�
�it�0

+− �q,q,t2� + 
�it�0
+− �q,q,t

− t1�
�lo�0
+− �q,q,t1 − t2�
�it�0

+− �q + Qs,q,t2�

+ 
�it�0
+− �q,q + Qs,t − t1�
�lo�0

+− �q + Qs,q + Qs,t1

− t2�
�it�0
+− �q + Qs,q,t2� + 
�it�0

+− �q,q + Qs,t

− t1�
�lo�0
+− �q + Qs,q,t1 − t2�
�it�0

+− �q,q,t2�� + ¯ ,

�35�

which is illustrated diagrammatically by Fig. 5.
To make the formulation more compact, we define a 2

�2 matrix 
̂+−�q ,	� with the components


̂�1,1�
+− �q,	� � 
+−�q,q,	� ,


̂�1,2�
+− �q,	� � 
+−�q,q + Qs,	� ,


̂�2,2�
+− �q,	� � 
+−�q + Qs,q + Qs,	� ,


̂�2,1�
+− �q,	� � 
+−�q + Qs,q,	� . �36�

With this definition, the Fourier transformation of Eq. �35�
reads

= +

+

+…

� � � � � � �

� � � � �

= +
� � � � ��

�

�

FIG. 5. Feynman diagrams of RPA for dy-
namic spin correlation of itinerant electrons. Here
the single line bubbles denote the dynamic spin
correlation function of �free� itinerant electrons,

̂�it�0

+− �q ,	�, the double line bubbles are the renor-
malized dynamic spin correlation function of itin-
erant electrons, 
̂�it�

+−�q ,	�, the dotted lines are the
dynamic spin correlation function of local mo-
ments, 
̂�lo�0

+− �q ,	�. The indices � ,� , . . . label the
matrix elements defined in Eq. �36�.

FIG. 4. �Color online� Dynamic spin susceptibility of
itinerant electrons at the mean-field level, i.e., 
�it�0Qs

� �	�
�−2 Im 
�it�0

+− �Qs ,Qs ,	� with and without SDW order. A gap
2�SDW in the SDW ordered case is clearly shown.
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̂�it��1,1�
+− = 
̂�it�0�1,1�

+− + � J0

2
2

�
i,j=1,2


̂�it�0�1,i�
+− 
̂�lo�0�i,j�

+− 
̂�it�0�j,1�
+−

+ ¯ , �37�

and more generally


̂�it��i,j�
+− = 
̂�it�0�i,j�

+− + � J0

2
2

�
i�,j�=1,2


̂�it�0�i,i��
+−


̂�lo�0�i�,j��
+−


̂�it�0�j�,j�
+−

+ ¯ . �38�

As the Dyson equations in a compact matrix form, the above
RPA result for the itinerant electrons can be re-expressed as


̂�it�
+−�q,	� = �I − � J0

2
2


̂�it�0
+− �q,	�
̂�lo�0

+− �q,	�	−1


̂�it�0
+− �q,	� ,

�39�

and similarly for the local moment part illustrated by Fig. 6,
we have


̂�lo�
+− �q,	� = �I − � J0

2
2


̂�lo�0
+− �q,	�
̂�it�0

+− �q,	�	−1


̂�lo�0
+− �q,	�

�40�

with the total dynamic spin susceptibility matrix given by


̂RPA
+− �q,	� = 
̂�it�

+−�q,	� + 
̂�lo�
+− �q,	� . �41�

B. Collective spin modes

Now we focus on the total dynamic spin susceptibility
defined by


RPA� �q,	� = − 2 Im 
̂RPA�1,1�
+− �q,	�m , �42�

which can be numerically determined based on the RPA ex-
pressions �39�–�41� given in Sec. III A.

In Fig. 7, 
RPA� �q ,	� at a fixing q=Qs is shown as a
function of 	. Here we find a sharp peak emerges at 	=0, in
contrast to Figs. 3 and 4. Namely a zero-mode �Goldstone
mode� pole is indeed restored at q=Qs in the RPA spin-spin
correlation function. Mathematically, it originates from the
vanishing denominator in Eqs. �39� and �40�.

It is interesting to note that besides the Goldstone mode,
there remains a high-energy mode as represented by the
hump in Fig. 7. It can be traced to the pole of 
̂�lo�0

+− �q ,	� �cf.
Fig. 3�, only broadened through the scattering with the itin-
erant electrons. In other words, the gapped collective mode
of the local moments identified in the mean-field state in the
previous section is still present at the RPA level. Physically
this gapped mode is an out-of-phase fluctuations of the local
moments relative to the magnetization of itinerant electrons
while the Goldstone mode is the “in-phase” fluctuations of
the locked magnetizations from the local moments and itin-
erant electrons.

To display the spin dynamics of the system in the whole
BZ, the calculated 
RPA� �q ,	� is presented in Fig. 8�a� with
the x axis representing the momentum q along the high-
symmetry lines in the reduced BZ and the y axis for the
frequency 	, while the brightness depicting the spectral
weight 
RPA� �q ,	�. From Fig. 8�a�, it is clearly shown that
the spin excitation spectrum in the AF ordered phase is sepa-
rated into two branches, i.e., the lower Goldstone-mode
branch and the upper out-of-phase mode branch. The disper-
sions of the two modes are illustrated in Fig. 8�b�, which are
defined by �q ,	� at the largest �brightest� 
RPA� �q ,	� in Fig.
8�a�. The spin-wave dispersion of the pure J1-J2 model, i.e.,
Eq. �16� and that of the gapped one, Eq. �18�, due to cou-

= +

+

+…

� � �
� �

� � � � �

= +
� �

� �
�

� � �

�

�

FIG. 6. Feynman diagrams of RPA for dy-
namic spin correlation of local moments. Here
the double dotted lines are the renormalized dy-
namic spin correlation function of local moments

̂�lo�

+− �q ,	�. The other symbols are the same as in
Fig. 5.

FIG. 7. Total dynamic spin susceptibility of coupled system in
RPA level 
RPA� �q ,	� fixing q=Qs.
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pling to the SDW order of the itinerant electrons are also
shown for comparison.

The lower branch Goldstone mode in Fig. 8�b� is well
defined within a small region which centers at the AF wave
vector Qs, upper bounded by the SDW gap, i.e., 2�SDW of
the itinerant electrons, beyond which it decays quickly due to
the scattering with the particle-hole continuum of itinerant
electrons �cf. Fig. 4�. Inside the SDW order gap, such a
Goldstone mode is protected and is decoupled from the itin-
erant electrons due to the reconstruction of the Fermi surface
shown in Figs. 1 and 2.

On the other hand, the high-energy out-of-phase mode is
mainly contributed by the local moments and present
throughout the BZ. It gets slight renormalization and broad-
ening due to the scattering from the itinerant electrons at the

RPA level, but more or less follows the dispersion obtained
in the mean-field treatment �dotted�, with a gap �,

� � 	Qs
. �43�

It is noted that the Goldstone mode will be fragile against the
ion anisotropy. By adding an ion-anisotropy term,

H�ion� = − Jz�
i

�Si
z�2, �44�

the spin-rotational symmetry will be broken in Hlo. By using
the spin-wave expansion,

H�ion� = 2SJz�
k

�
�ak

†ak + bk
†bk� + const �45�

one finds the spin-excitation spectrum, Eq. �16�, acquires an
ion-anisotropy gap,

	k = S
��k + 2Jz�2 − Mk
2 . �46�

At the RPA level, the Goldstone spin wave will also become
gapped and its spectrum weight is reduced with reference to
that without ion anisotropy, as clearly shown in Fig. 9. When
one further increases Jz, the Goldstone mode disappears, but
the gapped out-of-phase collective mode remains robust and
insensitive to the ion anisotropy.

Therefore, in the present coupled local moment and itin-
erant electron system, the Goldstone theorem still holds for a
spontaneously symmetry breaking state with AF ordering at
the RPA level. However, the Goldstone mode is very sensi-
tive to the presence of ion anisotropy and does not play an
important role for charge dynamics as it is decoupled from
the itinerant electrons. On the other hand, the gapped out-of-
phase collective mode is more prominent which extends over
the whole BZ with a spin-wave bandwidth �4J2 and can be
easily probed by neutron-scattering experiments. Such two-
branch collective spin excitations are unique prediction for
the AF ordered phase. In the next section, the charge re-
sponse will be further examined based on the scattering of

FIG. 8. �Color online� �a� The brightness represents the spectral
weight of the dynamic spin susceptibility 
RPA� in the q and 	
space. �b� The dispersions of two branches of the collective spin
mode as read from �a�. The dispersions of the spin wave of the pure
J1-J2 model �dotted� and that with a gap opening at the mean-field
level �dashed� are also shown for comparison.

FIG. 9. The dynamic spin susceptibility similar to Fig. 8 but
with an additional ion anisotropy Jz=1 meV.
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such collective spin modes with the itinerant electrons in
SDW ordering.

IV. CHARGE DYNAMICS

In this section, we study the charge dynamics in the
coupled local-moment and itinerant-electron system in the
AF ordered phase. Here the itinerant electrons in the Fermi-
surface region will be highly coherent even in the presence
of the gapless Goldstone mode.

A. Self-energy of itinerant electrons

By going beyond the mean-field linearization in Eq. �5�,
we shall consider the scattering based on

HJH
→ HI� = −

J0

2
N
�

k�R,q�R,��

ck�↓
† cq�↑�Sq−k

+ Vk,q
�1� ��,��

+ Sq−k+Qs

+ Vk,q
�2� ��,��� + H.c.

� −
J0

2
N
�

k�R,q�R,��

ck�↓
† cq�↑Rkq��

+ + H.c.,

�47�

where the Vk,q
�1,2��� ,�� are defined by Eq. �32�. Here we retain

only the scattering of itinerant electrons with the transverse
fluctuations of local moments as the longitudinal fluctuations
in Sz are gapped with �Sz��0.

The single-particle Green’s function can be evaluated per-
turbatively by

G��↓�k,	� = G��↓
0 �k,	� + �

��

G��↓
0 �k,	����↓�k,	�G��↓

0 �k,	�

+ O�HI�
4� , �48�

where the self-energy,

���↓�k,	� =
iJ0

2

4N
�

q�R,��
�

−�

+� d�

2�
G��↑

0 �q,	 − ��
�R�kq����
+− ���

�49�

with


�R�kq����
+− ��� = 
̂�lo��1,1�

+− �q − k,���V�1��2

+ 
̂�lo��1,2�
+− �q − k,��V�1�V�2��

+ 
̂�lo��2,1�
+− �q − k,��V�2�V�1��

+ 
̂�lo��2,2�
+− �q − k,���V�2��2. �50�

Here the matrix 
̂�lo�
+− is the dynamic spin correlation function

for the local moment in the RPA level defined in Eq. �40�.
Figures 10 and 11 show the corresponding Feynman dia-
grams of the self-energy correction for itinerant electrons.

The Eq. �48� can be further expressed in a 10�10 matrix
formalism by

Gk,	 = Gk,	
0 + Gk,	

0 �k,	Gk,	
0 + ¯ = Gk,	

0 + Gk,	
0 �k,	Gk,	,

�51�

which gives rise to Gk,	= ��Gk,	
0 �−1− ��k,	��−1. Here we have

omitted the spin index as they are in fact spin independent.

By noting that the zeroth-order single-particle Green’s
function is diagonal, through the Lehmann representation we
have for 	�0,

− Im ����k,	� =
J0

2

4N
�

q�R,�
�

−�

+� d�

4�
��

0�q,	 − ��

�D���
+− �k − q,���nB��� + nF�� − 	�� ,

�52�

where

��
0�q,	� � − 2 Im G��

0 �q,	� �53�

and

D���
+− �k − q,�� � − 2 Im 
�R�kq����

+− ��� �54�

are the spectral functions of single-particle and the modified
dynamic spin susceptibility of the local moment, respec-
tively.

= + + +…

��

�

�

�

�

�

�

= +

�

�

�

�

�

�

�

�

�

�

�

�

	




�

�

�

�

�

�

FIG. 10. Feynman diagrams of self-energy correction for itiner-
ant electrons. Here the single black lines denote the propagators of
�free� itinerant electrons, G�

0 �k ,	�, the double black lines are the
renormalized propagators of itinerant electrons, G��k ,	�, the dot-
ted wavy lines are the modified dynamic spin correlation of local
moments in the RPA level 
�R�kq����

+− ��� defined by Eq. �50�. The
indices �, �, �, �, and �, label different bands.

�

�
�

�

)()( ���
����� qkR ��

	
 � ),( ��� k
�

),(0 ��� ��� qG �

FIG. 11. Self-energy correction for itinerant electrons.
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At zero temperature, the imaginary self-energy, Eq. �52�,
can be further evaluated as �for 	�0�

− Im ����k,	� =
J0

2

8N
�

q�R,�,0�Eq��	

D���
+− �k − q,	 − Eq�� .

�55�

In Fig. 12, the −Im ����k ,	� as a function of 	 is shown at
two typical momenta, �k1 ,�1� and �k2 ,�2�, respectively,
which are marked at Fermi pockets in Fig. 2�a�. It shows that
the lifetime of the quasiparticle excitations at these points of
Fermi pockets actually gets substantially enhanced at low 	
in the collinear AF ordered state �solid circles�, as compared
to an artificial case �solid squares� without an induced SDW
order appearing in itinerant electrons such that there is no
gap � opened up in the out-of-phase mode. It implies that
although in the normal state the itinerant electrons may be
strongly scattered by the low-lying local moment fluctua-
tions, the sharp coherence of quasiparticles will emerge in
the AF state, where the gapless Goldstone mode is essen-
tially decoupled from the particle-hole continuum and the
out-of-phase mode is gapped.

B. Optical conductivity

Finally, let us examine the overall structure of the optical
conductivity ��	� at the mean-field and RPA levels. It is

related to the current-current correlation function GJ�	�
through the relation

��	� = −
1

	
Im GJ�	� , �56�

where GJ�	� is the Fourier transformation of the current-
current correlator

GJ�t� � − i�TJ�t�J�0�� . �57�

Here J denotes the q=0 current operator J along, say, the x
axis for the five-band model, Eq. �2�, defined by

J =� �Hit�A�
�A

�
A=0

= �
k�mn

�� kfmn�k�ckm�
+ ckn�

= �
k�R,�mn��

ck��
† ck����� kfmn�k�Uk�

� �m,��Uk��n,��

+ �� kfmn�k + Qs�Uk�
� �m + 5,��Uk��n + 5,���

� �
k�R,���

Vk���ck��
† ck��. �58�

Omitting the vertex correction, we find

FIG. 12. �Color online� The imaginary part of the quasiparticle self-energy −Im ����k ,	� at two typical k points marked in Fig. 2�a� is
shown. The red-circled curve is for incorporating the scattering with the full collective mode at the RPA level and the black-squared one is
for the scattering with the bare local-moment fluctuations governed by Hlo.
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GJ�	� = −
i

N
�

k�R,�,��,����
�

−�

+� d�

2�
Vk���Vk�����

�G�����k,��G�����k,� + 	� �59�

with the Feynman diagrams shown in Fig. 13. Denoting

����k,	� � − 2 Im G����k,	�sgn�	� �60�

at T=0 we obtain

− Im GJ =
1

N
�

k�R,�,��,����
�

−	

0 d�

2�
Vk���Vk�����

������k,�������k,� + 	� �61�

such that

��	� =
1

N	
�

k�R,�,��,����
�

−	

0 d�

2�
Vk���Vk�����

������k,�������k,� + 	� . �62�

The calculated optical conductivity ��	� is shown in Fig. 14.
The black-squared curve shows the result for the bare five-
band itinerant electrons and the red circles represent the re-
sult of the SDW reconstructed bands. Note that the multipeak
structure is mainly due to the multiband effect with the lower
ones changing significantly in the SDW state. Furthermore,
by incorporating the scattering with the collective spin
modes at the RPA level, as shown by the blue triangles in
Fig. 14, no significant change has been found in the optical
conductivity with q=0. It clearly illustrated that the itinerant
electrons remain very coherent in the AF ordered phase,
where the low-lying Goldstone mode does not strongly scat-
ter the quasiparticles as expected.

V. DISCUSSION AND CONCLUSION

In this work, we have studied the collective spin excita-
tions in the AF ordered phase of a multicomponent system
composed of coexistent itinerant and localized electrons. The
main prediction is that a usual spin mode is split into two
branches in such a multiband system with orbital-selective
Mott transition. The lower branch is a gapless Goldstone

mode which is recovered at the RPA level and is quickly
damped above 2�SDW by coupling to the particle-hole con-
tinuum of itinerant electrons, similar to the case in which the
SDW order is due to the pure Fermi-surface nesting effect
for itinerant electrons. However, an upper branch remnant
spin wave reemerges above the SDW gap over a much wider
energy �J2 which is dominantly contributed by the local
moment fluctuations. Here the lower and upper branches can
be regarded as in-phase and out-of-phase combinations of
the spin fluctuations from the itinerant and Mott-localized
electrons, which are clearly distinguished from the single
mode in a conventional AF state either due to the pure
Fermi-surface nesting effect for itinerant electrons or AF su-
perexchanges of local moments.

Experimentally the high-energy spin-wave excitation has
been clearly observed by the neutron-scattering experiments
over an energy scale �J2 and presumably survives in the
high-temperature regime above the ordered phase. However,
a small gap ��6–10 meV� has been generally found in
SrFe2As2 and BaFe2As2, and interpreted as due to ion
anisotropy.33,34 As shown in this work, a small ion anisotropy
can indeed easily destroy the lower branch Goldstone mode,
while the upper branch is more robust. It remains to be seen
if the lower branch spin mode can be unambiguously identi-
fied for a sample with less ion anisotropy.

Another distinct property of the present system is that the
itinerant electrons become very coherent in the AF ordered
phase, leading to a good metallic behavior after the AF tran-
sition. This is in contrast to the presumably strong scattering
between the itinerant electrons and local moments in the nor-
mal state, where due to the very fact that the momentum
displacement of the hole-electron Fermi pockets of the itin-
erant electrons matches with the AF wave vector of the local
moments, there exists a strongly enhanced interaction, i.e.,
the resonant effect around Qs, between the two subsystems.
It provides the strong scattering source responsible for a
drastic change in the charge response once the system enters

���kV�
��� ''kV�

FIG. 13. Current-current correlation function for itinerant elec-
trons. Here the double black lines are the renormalized propagators
of itinerant electrons.

FIG. 14. �Color online� The optical conductivity ��	� in the AF
ordered state �blue solid triangle� which shows that the quasiparti-
cles remain quite coherent as compared to the case without incor-
porating the scattering with the collective spin modes �red solid
circles�. For comparison, ��	� for the pure five-band model without
the SDW reconstruction is shown �black square�.
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the AF long-range ordered state at low temperature. By
forming a joint magnetic ordering, the two subsystem effec-
tively get “decoupled” as the AF fluctuations of the local
moments gain a gap � as the out-of-phase collective mode.
On the other hand, the gapless Goldstone mode is effectively
decoupled from the itinerant electrons in the long wave-
length, thanks to the Fermi-surface reconstruction by the
SDW order.

Therefore, the collective fluctuations of the local moments
can serve as the main driving force for both the AF ordering
as well as the superconducting pairing in the system via the
resonant effect on itinerant electrons, as first pointed out in
Ref. 30. The resulting magnetic and charge properties in the
AF ordered state, in particular, the two branch collective spin

modes predicted in the present work, can be further tested by
experiment in order to establish the relevance of the model
with the iron pnictides.
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